
Overview Form Code Wrap-up

xmonad �=

Mark Hibberd

Jan 31, 2011

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Introduction Outline

XMonad: Presentation Cannon Fodder

Simple. XMonad defines simple window
management.

Featureful. Its small code footprint is packed
with great features.

Quality. XMonad is built with high-quality,
informative, code.

Awesome. Regardless of language and
construction, it is an awesome application.

Isn’t a parser or a compiler.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Introduction Outline

Overview

This.

XMonad: Form and Function

History.

Window Managers.

Demo.

XMonad: Code and Construction

Architecture and Design.

Practicality of Pure.

Data Structures.

Configuration and Extension.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Introduction Outline

Overview

This.

XMonad: Form and Function

History.

Window Managers.

Demo.

XMonad: Code and Construction

Architecture and Design.

Practicality of Pure.

Data Structures.

Configuration and Extension.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Introduction Outline

Overview

This.

XMonad: Form and Function

History.

Window Managers.

Demo.

XMonad: Code and Construction

Architecture and Design.

Practicality of Pure.

Data Structures.

Configuration and Extension.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

History

Created by Spencer Janssen and Don Stewart.

1st public commit March 7 2007.

0.1 April 2007.

0.9 October 2009.

0.10 Under development.

After DWM which set the benchmark for minimal.

Stated goals:

Break down stereo-types of functional programming.
Small, quality implementation, big =⇒ bad.
Live the haskell vision - code is more fun when it works.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

X11 and Window Managers

1 Kernel sends events to X server via
evdev.

2 X Server passes on events to client
to act upon.

3 Clients update and send a
rendering event back to X server.

4 X server passes on damage event
to window manager.

5 Window manager arranges clients
and sends an updated rendering
event back to X server.

6 X server communicates with kernel
and devices to update buffer.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

Tiling Window Managers

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

Tiling Window Managers

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

Tiling Window Managers

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

Comparison

window manager language loc test loc

metacity C 77683 306

stumpwm common lisp 17952 226

awesome C 17130 0

wmii C 14065 128

dwm C 2147 0

xmonad haskell 2222 1215

wm-spec spec’talk 1712 0
Metrics very roughly gathered Jan 27th 2011.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up History Window Managers Demo

Demo

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Design

Purely functional core.

Thin monadic skin provides
a solid, managed edge to
the system.

Interacts with X server and
config via X monad
(ReaderT, StateT, IO).

Leverage haskell and its
tools for maximum profit.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

XMonadContrib

Core is kept small.

Users were doing amazing things with their configs.

XMonadContrib evolved out of user demand for a mechanism
share these custom window management hacks.

Configs are really easy to re-use, and so XMonadContrib
exploded.

http://xmonad.org/xmonad-docs/xmonad-contrib/index.html

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Practical Programming

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Practical Programming

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Practical Programming

Definition

Abstraction: Highlighting essential concepts by omitting specific
and needless characteristics.

The pure model taken by xmonad allows for real abstraction.

The X apis are bad - really bad - but xmonad makes them
easy.

A novice at dealing with X or haskell can still be productive.

More importantly developers can have a higher level of
confidence in the correctness of their program.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Practical Programming

XMonad is one of the only window managers with robust
testing.

API was driven from QuickCheck. Anytime it was difficult
define properties, it triggered a revisit of the data structure.

100% coverage on core data structures, verified with HPC.

Use the type system to prevent bugs.

Static analysis using Neil Mitchel’s Catch library.

Referential transparency and the story of bug 177.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

How would you model workspaces and windows?

Purely functional data structure.

A pointer into a set of workspaces, each with a view into a list
of windows.

Perfect fit for zippers (more a one-hole context than a
traditional zipper).

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

How would you model workspaces and windows?

Purely functional data structure.

A pointer into a set of workspaces, each with a view into a list
of windows.

Perfect fit for zippers (more a one-hole context than a
traditional zipper).

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

How would you model workspaces and windows?

Purely functional data structure.

A pointer into a set of workspaces, each with a view into a list
of windows.

Perfect fit for zippers (more a one-hole context than a
traditional zipper).

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers and One-hole contexts

Efficient navigation for immutable data structures.

The techniques may be familiar, origins in the 1960s.

The term zipper and its application to purely functional data
structures was introduced by Gérard Huet.

Generalisation of one-hole contexts is presented in Conor
McBride’s aptly named paper: Clowns to the Left of me,
Jokers to the Right.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

Thanks

A note of thanks for Edward Yang who gave permission to
reproduce the following diagrams to explain zippers.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

data Tree a = Nil | Node a (Tree a) (Tree a)

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

Can traverse with path copying, but lose accessibility to some
segments.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

Flip a pointer and you have a zipper.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

A more comprehensive example.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Zippers

data Loc a = Loc (Tree a) (Context a)
data Context a = Top

| Left a (Tree a) (Context a)
| Right a (Tree a) (Context a)

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Stacked Set

-- i = tag
-- l = layout
-- a = window
-- sid = screen id
-- sd = screen detail

data StackSet i l a sid sd =
StackSet { current :: !(Screen i l a sid sd)

, visible :: [Screen i l a sid sd]
, hidden :: [Workspace i l a]
, floating :: M.Map a RationalRect
} deriving (Show, Read, Eq)

Tracking the current workspace, visible - but not focused -
workspaces for multi-head support, the hidden workspaces and
floating layers.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Supporting Characters

data Screen i l a sid sd =
Screen { workspace :: !(Workspace i l a)

, screen :: !sid
, screenDetail :: !sd }

deriving (Show, Read, Eq)

data Workspace i l a =
Workspace { tag :: !i

, layout :: l
, stack :: Maybe (Stack a) }

deriving (Show, Read, Eq)

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Stack

data Stack a =
Stack { focus :: !a -- focus

, up :: [a] -- clowns to the left
, down :: [a] } -- jokers to the right

deriving (Show, Read, Eq)

This is a pointed list where the cursor represents the focused
windows. And the left most element represent the master window.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Windows revisited.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Window Management API (Simplified)

A simplified api for window management. StackSet is parametrized
over a number of variables in reality.

-- Constructing a new window manager with ’n’ workspaces.
new :: Int -> StackSet a

-- Extract the currently visible window.
peek :: StackSet a -> Maybe a

-- Extract the windows on the current workspace.
index :: StackSet a -> [a]

-- Move the currently focused window to workspace ’n’
shift :: Int -> StackSet a -> StackSet a

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Window Management API (Simplified)

-- Move focus to the left or right window
focusLeft, focusRight :: StackSet a -> StackSet a

-- Bring a new window under management
insert :: a -> StackSet a -> StackSet a

-- Delete the currently focused window
delete :: StackSet a -> StackSet a

-- View the virtual workspace to the left or right.
viewLeft, viewRight :: StackSet a -> StackSet a

Notice the symmetry, favour idempotent and reversible operations. Easier

to assert properties.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

X monad

The X monad is a typical transform stack for an effectful
application. It is used to store the configuration environment, track
application state and interact with the outside world. In this case
to the X Server via FFI.

newtype X a = X (ReaderT XConf
(StateT XState
IO) a)

deriving (Functor, Monad, MonadIO,
MonadState XState,
MonadReader XConf, Typeable)

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Monadic Armour

doLayout :: layout a -> Rectangle -> Stack a
-> X ([(a, Rectangle)], Maybe (layout a))

pureLayout :: layout a -> Rectangle -> Stack a
-> [(a, Rectangle)]

handleMessage :: layout a -> SomeMessage
-> X (Maybe (layout a))

pureMessage :: layout a -> SomeMessage
-> Maybe (layout a)

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Configuration

Pure haskell library, import and run.

defaultConfig based upon core.

Use XMonadContrib to pimp your config.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Extension

Extension and Configuration are equivalent.

Configurations are highly composable and can be packaged up
like any haskell library.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

A custom layout

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

The Reliability Toolkit

XMonad Development Philosophy.

Taken from Don Stewart’s presentation: Design and
Implementation of XMonad.

Cabal

-Wall

QuickCheck

HPC

Type system

Catch

Mark Hibberd xmonad�=



Overview Form Code Wrap-up Design Practicality Data Structures Configuration

Kicking Butt with Haskell

XMonad Development Philosophy.

Taken from Don Stewart’s presentation: Design and
Implementation of XMonad.

Model effectful systems in purely functional data structures.

Use QuickCheck as your design assistant.

Use HPC to keep QuickCheck honest.

Enforce code quality with serious testing on every commit.

Don’t be tempted by partial functions.

Don’t be tempted by side effects.

Be responsive to bug reports.

Look at your competition’s bugs, audit and prevent them.

Mark Hibberd xmonad�=



Overview Form Code Wrap-up

More information

1 XMonad - http://xmonad.org

2 XMonadContrib -
http://xmonad.org/xmonad-docs/xmonad-contrib/index.html

3 IRC - #xmonad - irc.freenode.org

Mark Hibberd xmonad�=



Overview Form Code Wrap-up

References

1 Roll your own window manager -
http://cgi.cse.unsw.edu.au/ dons/blog/2007/05/01,
http://cgi.cse.unsw.edu.au/ dons/blog/2007/05/17.

2 Design and Implementation of XMonad -
http://www.cse.unsw.edu.au/ dons/talks/xmonad-hw07.pdf

3 Functional Pearl, The Zipper - http://www.st.cs.uni-
saarland.de/edu/seminare/2005/advanced-fp/docs/huet-
zipper.pdf

4 Clowns to the Left, Jokers to the Right -
http://strictlypositive.org/CJ.pdf.

5 You could have invented zippers -
http://blog.ezyang.com/2010/04/you-could-have-invented-
zippers/.

6 Lighter introduction to zippers -
http://learnyouahaskell.com/zippers

Mark Hibberd xmonad�=



Overview Form Code Wrap-up

References

1 Monad transformers -
http://book.realworldhaskell.org/read/monad-
transformers.html

2 More Monad transformers -
http://en.wikibooks.org/wiki/Haskell/Monad transformers

3 Quick Check -
http://haskell.org/haskellwiki/Introduction to QuickCheck

4 Coverage - http://projects.unsafeperformio.com/hpc/

5 XMonad and Catch -
http://neilmitchell.blogspot.com/2007/05/does-xmonad-
crash.html

6 Bug 177 -
http://code.google.com/p/xmonad/issues/detail?id=177

Mark Hibberd xmonad�=


	Overview
	Introduction
	Outline

	Form
	History
	Window Managers
	Demo

	Code
	Design
	Practicality
	Data Structures
	Configuration

	Wrap-up

